

International Council of the Aeronautical Sciences (ICAS)

Workshop - September 2011

# Expanding the Limits of Advanced Materials & Structures

#### **Frank Doerner**

Vice President, Boeing Research & Technology The Boeing Company

05 September 2011



#### **Discussion Points**

- The Compelling Vision for Improving Materials
   & Structures
- Commercial Aerospace Challenges
  - Changing the Game The 787 Dreamliner
- Defense Aerospace Challenges
  - Phantom Eye Prototype
- Our Technical Challenges



#### **Advanced Materials & Structures**







Advancements in materials and structures have been, and will always be, critical to aerospace growth!

# The Compelling Need for Improved Materials & Structures





**Airlines** 

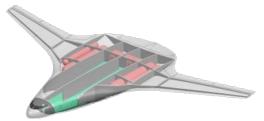


Governments



**Lower Acquisition Cost** 




**Reduced Fuel/Energy Costs** 



**Reduced Environmental Impact** 



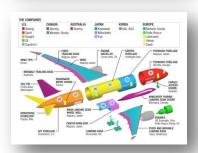
**Lighter Materials** 



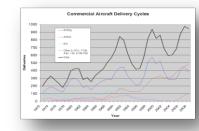
**Innovative Structural Concepts** 



**Optimized for Producibility** 




## **Commercial Aerospace Challenges**


 Large non-recurring investments drives desire for risk-sharing partners



 Highly complex products – creates partnering challenges



Cyclical Production



 Regulatory agencies' comfort level with new technologies





#### **Commercial Airframe Structures**

- Emphasis on weight reduction remains a priority
- Enabled high-rate production
- Next gen products will need a balanced material suite – Composites, Ti, aluminum, steel,...
- Continual downward pressure on manufacturing costs









#### The 787 delivers:

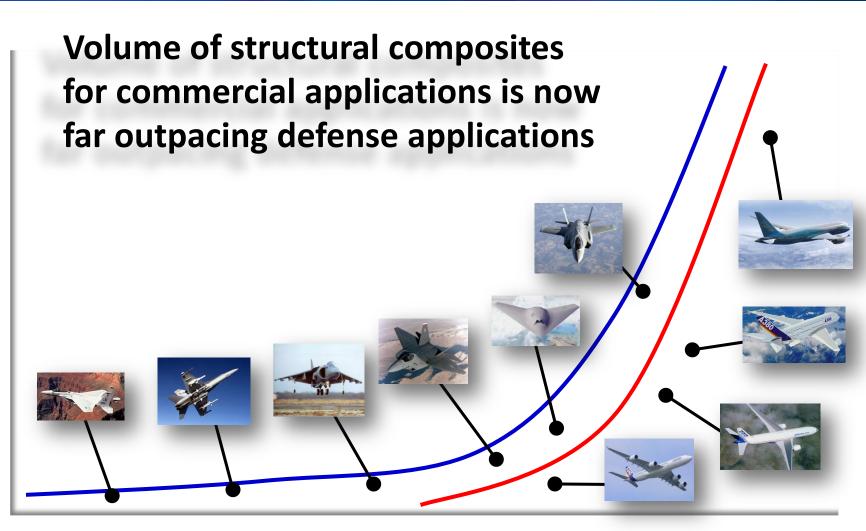
20%\* Reduction in fuel and CO<sub>2</sub>

28% Below 2008 industry limits for NOx

60%\* Smaller noise footprint

\*Relative to the 767

Other


Steel

Composites

Aluminum

Advanced materials play a key role in lighter airframes and more efficient engines

# **Structural Composites Changing the Game**



**Time** 

# What Happened to Increase Commercial Aerospace Composites Usage?

- Improved Material Technology
  - Higher strength fiber
  - Higher temperature, strength & toughness resins
- Improved Manufacturing Technology
  - Automated processing
  - Structural Bonding
- Improved Analysis & Modeling Techniques
  - Dimensional analysis & control
  - Structural analysis & modeling
- Increased focus on life-cycle cost
  - Better corrosion resistance
  - Low cost repair techniques









~8%

ICAS Sept 2011 I 9



# 787 Productionized Large Composite Structures

**Tooling** 





**Fabrication Automation** 



Inspection



**Assembly Technologies** 



**Bonding** 



**Repairs** 



ICAS Sept 2011 I 10 Copyright © 2011 Boeing. All rights reserved.



### **Composites Created Challenges In...**

- Design and analysis
- EME shielding
- Heat distribution
- Other material technologies
  - Titanium, Coatings, Fasteners
- Tooling
- Production technologies
- Repair methodologies







The 787 program developed and implemented practical solutions to these challenges



## **Defense Aerospace Challenges**

Prove it works – "Fly before buy"



Small production lots



Adaptable architectures



Foreign participation





## **Defense & Space Aerostructures**

- Wide range of product types aircraft, satellites, hypersonics, spacecraft, missiles, helicopters,...
- Unique performance requirements
  - high temperatures, corrosive environments, radiation,...
- Long development cycles
- Low production rates















# **Prototyping**





Out of Autoclave Composites



**Simple Testing** 



Minimal Tooling







# **Future Technology Enablers**

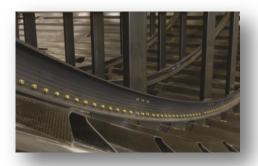
#### **Multi-functional materials**



**Structural** 



**Electrical** 

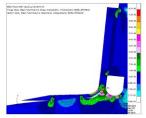


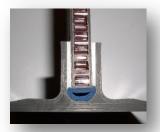

**Thermal** 



**Acoustic** 

# Novel architectures for performance improvements




# Modeling & simulation of structural performance







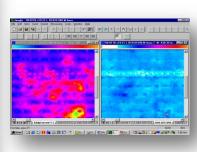






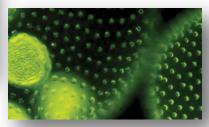


# **Future Technology Enablers (cont.)**


#### Flexible automation






#### Distributed and robust Nondestructive Inspection





#### **Environmentally responsive**





#### **Surface chemistry**







# The Challenges for Materials & Structures

- Speed need to develop, certify and qualify new technologies faster
- Leveraging the materials and manufacturing technologies with advanced configurations
- Reducing the environmental impact
  - to build, operate & dispose
- Global partnering
- Cost, cost, cost









### **Summary**



